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Abstract

Latent Semantic Indexing (LSI) uses the Singular Value Decomposition to reduce noisy dimensions
and improve the performance of text retrieval systems. Preliminary results have shown modest improve-
ments in retrieval accuracy and recall, but these have mainly explored small collections. In this paper
we investigate text retrieval on a larger document collections (TREC) and focus on distribution of word
norm (magnitude). Our results indicate the inadequacy of word representations in LSI space on large
collections. We emphasize the query expansion interpretation of LSI and propose a LSI term normaliza-
tion that achieves better performance on larger collections.
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1 Introduction

The use of Latent Semantic Indexing (LSI) has been proposed for text retrieval in several recent works
(Deerwester et al., 1990; Dumais, 1991; Hull, 1994; Berry et al., 1995). This technique uses the Singular
Value Decomposition (SVD)(Golub and Loan, 1996) to project very high dimensional document and query
vectors into a low dimensional space. In this new space it is reasoned that the underlying structure of the
collection is revealed thus enhancing retrieval performance. Furthermore, LSI can be alternatively reviewed
as a query expansion method (see sections 2.2 and 5), so that recall is generally improved. Experiments
indicate both improved retrieval precision and recall when LST is adopted (Deerwester et al., 1990; Dumais,
1991; Hull, 1994; Berry et al., 1995; B.T. Bartell and Belew, 1995; Zha et al., 1998; Ando and Lee, 2001). LSI
also improves text categorization (Dumais, 1995; Yang, 1999; Baker and McCallum, 1998) and word sense
disambiguation (Schutze, 1998). Theoretical results (B.T. Bartell and Belew, 1995; Papadimitriou et al.,
1998; Ding, 1999; Zha et al., 1998) have also provided some understanding on the effectiveness of LSI.
These LSI studies have, however, mostly used relatively small text collections and simplified document
models. In this work we investigate the use of the LST on a larger document collection (TREC). Our initial
finding is that on larger text collections, retrieval precision is not enhanced because the LSI mechanism for
representing the terms is not sufficient for dealing with the variability in term occurrence. We focus on
the norm (the magnitudes) of terms and study the term norm distribution in detail. We propose a term
normalization scheme for LSI which improves retrieval precision on the TREC and NPL text collections.
In Section 2 we introduce the text retrieval concepts and LSI necessary for our work. A short description
of our experimental setup is presented in Section 3. Section 4 describes how term occurrence variability
affects the SVD and then shows how the decomposition influences retrieval performance. A possible way
of improving SVD-based techniques is presented in Section b and we conclude in Section 6. A preliminary

version of this report appeared in (Husbands et al., 2001).

2 The Vector Space Model and LSI

In text retrieval (see (Frakes and Baeza-Yates, 1992; Salton and Buckley, 1988; Berry et al., 1995) for
treatments of some of the issues), a simple way to represent a collection of documents is with a term-
document matrix X with

X, ) = L(5, ) * G(3)

where L(7,j) is a local weighting and G(¢) is a global weighting depending on term ¢. The local weight
depends on ¢f(¢, j), the number of occurrences of term ¢ in document j. In a very simple weighting scheme,
one simply uses X (4,j) = tf(i,j) as the entries of the term-document matrix. However, this scheme is

incorrectly dominated by frequent terms.

2.1 Term Weighting

Perhaps the most commonly used term weighting scheme is the tf.idf weighting scheme. This scheme uses

the standard term frequency tf(i,j) as the local weighting, but weighted by the global inverse document



frequency (idf). This scheme is specified by

L(Za]) = tf(iaj)a G(Z) = ldf(l) = IOgZ(F() + 1) (1)

where n is total number of documents, and df(¢) is the document frequency of term ¢, the number of

n
1

documents in which term ¢ occurs. This scheme gives very frequent terms low weight and assigns large
weight for infrequent (and hopefully more discriminating) terms.

For comparison pursposes we also study the log.entropy weighting scheme (Dumais, 1991). In this
weighting, the local term weight is the logarithm of the term frequency. The global weighting uses the
entropy F(7) of term ¢. This scheme is specified by:

LG, ) = oy (060, J) + 1), GO = 1= B0, B() = - 3 Lecka) @)

j=1
where p;; = %

Queries (over the same set of terms) are similarly represented. The similarity between document vec-
tors (the columns of term-document matrices) can be found by their inner product. This corresponds to
determining the number of term matches (weighted by frequency) in the respective documents. Another
commonly used similarity measure is the cosine of the angle between the document vectors. This can be
achieved computationally by first normalizing (to 1) the columns of the term-document matrices before
computing inner products.

In the discussion to follow we will denote by “term matching” the standard retrieval scheme: for query
g, the relevance scores for each document form a vector r and is computed as r = X7 % q. For £ queries

Q = [q1,92, -, q¢], the corresponding relevance vectors R = [r1,ra, - -, r¢] are then computed by:

R=X"%Q

2.2 LSI and a query expansion interpretation

Latent Semantic Indexing (LSI, (Deerwester et al., 1990; Berry et al., 1995)) attempts to project term and
document vectors into a lower dimensional space spanned by the true “factors” of the collection. This uses
a truncated Singular Value Decomposition (SVD) of the term-document matrix X with m terms and n
documents.

If X is an m X n matrix, then the SVD of X 1s
X =Usv”

where U is m x n with orthonormal columns; V' is n x n with orthonormal columns, and S 1s diagonal with
the main diagonal entries sorted in decreasing order. LSI uses a truncated SVD of the term-document matrix
where X is approximated by

Xa X, = UkSkaT

where Uy = [uy, ua, ..., uy] (the first k& columns of U), Vi, = [v1,va,...,vz], and S; = diag(s1,s2,...,5k)
(the upper left k by k part of S). This gives the best rank & approximation to the original matrix. Now the

relevance score matrix becomes

R=X[Q =SV Q=0 X)" (U] Q) (3)



Uy 1s the projection operator that projects an n-dimensional document or query into k-dimensional LSI
subspace. Note that even if the columns of X are normalized to 1, the columns of X7 U}, are not automatically
normalized, and so we compute cosines between the projected documents and projected queries.

We may also write R = XT (U} UkTq) and investigate an alternative view of LSI. Given a term in ¢, Uy UkTq
expands this term into many other terms. (If we retain all LST index vectors, i.e, set k = m, by a standard
linear algebra theorem, U,, UL = I, the identity matrix. This implies LSI returns to standard keyword
matching, no query expansion.) Thus LSI can be alternatively viewed as a query expansion method. This
explains why retrieval recallis improved in LSI. This query expansion interpretation of LSI by approximate
word co-occurence is important for our modification of LSI in section 5.

In the LSI representation the rows of UySy are identified as the “projected terms” and the columns of
UF'X = V;.Si are identified as the “projected documents”. ! Note that the “projected documents” are
simple linear combinations of the projected terms (see Section 5).

The truncated SVD is usually computed by an iterative technique such as the Lanczos method. The
SVDs in this report were computed with the PARPACK software package (Maschhoff and Sorensen, 1996)
(as well as TRLAN (Wu and Simon, 1999) for verification). Another popular software package for computing
SVDs is SVDPACK (Berry, 1992).

2.3 Evaluation

In response to a query, a text retrieval system returns an ordered list r of the documents where (1) is the
most relevant, r(2) is the second most relevant, and so on. Here r is obtained by sorting the relevance scores
previously defined. The standard way to evaluate the performance of a system is to obtain these lists on
pre-judged queries and compute precision and recall. At point i, the precision is the number of relevant
documents in the first i elements of » (denoted by r(1 : 7)) divided by é. This is a measure of the “accuracy”
of the retrieval: the fraction of the documents returned that are relevant. The recall is the number of
relevant documents in r(1 : ¢) divided by the total number of relevant documents. This is a measure of
the “completeness” of the retrieval: the fraction of all relevant documents returned. For each query these
measures are computed at each ¢ from 1 to the number of documents. Precision values at fixed recall levels
(typically interpolated to 0, 0.1, 0.2, ..., 1.0) are noted and then averaged. A sample precision/recall curve
for the MEDLINE test set (with 8847 terms and 1033 documents) using term matching and LST is shown is
Figure 1.

In precision/recall terms, higher curves are better as they indicate a higher percentage of relevant doc-
uments at each recall level. In the discussion that follows we will be evaluating various algorithms for text

retrieval based on their precision/recall performance.

2.4 LSI Performance

Experiments with LSI have primarily used small data sets. The primary reason for this is the complexity

(in both time and space) of computing the SVD of large, sparse term-document matrices. Nevertheless,

ere 1s some disagreement about usin, , Ok , or S, as e “projecte erms”. In is work we use S Uy
1There i disag t about using UL, S UL, or S;'UT as the « ted terms”. In th k SpU

primarily because the term-term similarity matrix X X7 can be decomposed as US2U7T if X = USV7T. Hence the rows of U S},
naturally correspond to the rows of X (see (Ding, 1999)).



early results were encouraging. Figure 1 compares LSI using with £ = 200 to term matching for the small
MEDLINE collection. Here IDF weighting was used and the term-document matrix was normalized prior to

decomposition. The cosine similarity measure was used in both cases.
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Figure 1: LSI vs. Term Matching on MEDLINE (tf.1idf)

Performance on very large collections is not as good. Figure 2 shows LSI using & = 300 on TREC6
(Voorhees and Harman, 1998), a collection with 115000 terms and 528155 documents. As the field has not
entirely settled on the optimal &, experiments with different numbers of factors up to 1000 have shown
similar performance. Note that the computational resources needed for using more than 1000 factors make
this impractical for all but the largest supercomputers.

In the rest of this paper, we will investigate reasons for this drop in performance and attempt to change
the projection process in order to rectify this problem. A major factor will be the norm distribution of the

projected terms, discussed in Section 4.

3 Software Used

For the experiments in this paper we used the MATLAB*P system (Husbands et al., 1999). MATLAB*P
enables users of supercomputers to transparently work on large data sets within Matlab. Through the use
of an external server (that stores and operates on data) and Matlab’s object oriented features we can handle
data as though it were “in” Matlab. In this way, we were able to run our experiments in parallel on NERSC’s
Cray T3E and IBM SP and no changes had to be made when moving from small to large collections. For

example, if A is the term document matrix and Q is a matrix of queries, to investigate LSI we can type,
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Figure 2: LSI vs. Term Matching on TREC6 (tf.1idf)

[U,s,V]=svds(X,k); % Perform a truncated SVD
newTerms=Uxdiag(S); % Compute the projected terms
newA=V’;

newQ=newTerms’*Q; % Get new representation for queries

% Use normcols for cosine measure and find the similarities

Scores=normcols(newld) ’*normcols(newQ);

Computing and graphing precision/recall curves from pre-judged queries also takes place in MATLAB*P

using simple m-file scripts.

4 Term Norms vs. Inverse Document Frequency

The norms (lengths) of the rows of U Sy (in addition to their directions) have great influence on the repre-
sentations of the documents and queries. As Figure 3 and Table 1 show, there is great variability in term
norm. In this section we will attempt to explain this variability and its effect on retrieval performance.

Because projected documents and queries are simple linear combinations (c.f. Section 2.2) of the projected
terms, terms with low norm contribute very little to the representations of documents and queries. The cosine
similarity measure comes into play too late: after the documents and queries have been projected. Thus, if
searching for a term that happens to have low norm, the documents that contain it will have only a small
component of that term and be dominated by other terms making i1t difficult for retrieval.

Figure 3 shows a histogram of term norms for the TREC collection and Figure 4 plots IDF vs. term
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Figure 3: Histogram of TREC6 (k = 300) term norms (with tf.idf weighting).

norm for the NPL (7491 terms and 11429 documents) and TREC text collections. We see the wide range of
norms and that the lowest norm terms have the highest IDF weights. This implies that lowest norm terms
are those with the lowest frequencies in the collection.

A term with low frequency is often important to discriminate among relevant documents. Therefore, its
effect in IR should be magnified, and so its weight in IDF is large. However, our experiments indicate that
the correction power of IDF is not sufficient.

As an example of this, consider the TREC6 query that contains the words “polio, poliomyelitis, disease,
world, control, post”. For this query, the word “polio” is more specific than “disease” (like “tennis” is more
specific than “sports”). The word “polio” has IDF weight 11.75 but norm 0.16 (k=300). The word “disease”
has weight 6.17 and a much higher norm of 3.44. It happens that the top documents returned for this query
are all about disease eradication efforts, but for diseases other than polio (malaria, tuberculosis, AIDS, etc.).
It seems that as far as disease goes, malaria, tuberculosis; AIDS are more prevalent in the collection whereas
polio is relatively less frequent. If the original intent of the query is to find the specific disease polio, the

small norm of polio is not helpful for this goal.

Collection k | Min norm | Max norm | Min IDF | Max IDF
MED 100 1.3e — 2 2.0e 4+ 0 1.9 10.0
NPL 100 2.be — 3 54e+0 2.5 13.5
TREC6 300 1.5e—4 1.5e + 2 1.3 16.4

Table 1: Term norms and IDF for text collections

The popular tf.1idf global weighting scheme appears to be inadequate to mitigate the effect of low term
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Figure 4: IDF and term norm in LSI-space for the NPL (left) and TREC6 (right) collections (tf.idf). For
TRECS6 terms with norm > 20 (42 in total) were are not displayed.

norm. Table 1 shows the range of norms and IDF for a few test collections. The lowest term norms are
typically orders of magnitude away from the highest IDF | hinting at IDF’s inadequacy. We can therefore
say that the effect of IDF is lost after projection. The situation with entropy term weighting i1s similar. The
entropy weights have an even smaller range than the IDF weights and so also are unable to compensate for
large variations in term norm.

This situation could be understood in the following way. The occurrence probability of a term is approx-
imately proportional to the document frequency of the term, P(¢) oc df(¢). The norm of ¢ is approximately

proportional to P(t). Thus, for two terms 1,2, their norms have a ratio of
n(t1)/n(ta) ~ df(t1)/df(t2) ~ 100 — 10000
whereas the ratio of their IDFs is approximately
log[N/df(t1)]/log[N/df(t2)] = 10.

The magnitudes of these two ratios are given in Table 1. They underly the level of importance of the
discriminanting power of rare words using norm or IDF. Clearly IDF is not enough to amplify the effect of
these rare words.

Because the columns of U} are scaled by the singular values, these have a contributing effect on term
norm distribution and the projected documents. Figure 5 plots the singular values of the NPL and TRECG6
collections. It is interesting to note that after an initial drop the singular values decay very slowly over the

displayed range.

5 Normalized LSI

In this section we attempt to remedy the situation by (1) examining how documents are represented in LSI

space and (2) proposing a normalization to compensate for infrequent terms.
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Figure 5: The first 1000 singular values of the NPL (left) and TRECS6 (right) collections.

In LSI space, the documents are represented by columns of UkTX and terms are represented by rows of
Ui Sk (column vectors of SkUkT =[t1, -, tm) with ¢; the jth term). We can write UkTX as Sk_l(SkUkT)X =
Sk_l [t1, -, 1m]X. Therefore, each document in LSI space is a linear combination of {t1,- - - ¢, }. For example,

the jth document is

m
-1
Sy E cijti,
i=1

cij = X(i, 7).

As discussed in previous sections, idf and entropy are inadequate in compensating for the effects of
infrequent terms in ({1, -,4,,). Motivated by this we therefore propose to normalize ({1, -, t,,),? i.e., rows
of U, S, as

Ty = row-normalized(UySg) = D™ (Ur St ). (4)
where D = diag(dy,...,dy) is a diagonal matrix, d; = norm of ith row of UpS;. In the normalized LSI, we

compute the relevance scores using

R=(I{ X)' (T} Q), ()

instead of using Eq.3 in stardard LSI,
The normalized LSI can be alternatively viewed as an improvement to the query expansion interpretation
of LST (see section 2.2). If we use cosine similarity between words (rows of UpSy) in LSI, the word-word

co-occurrence matrix 1s

C =D YN ULS)(UrS) ' D7 = T, T

Consider the query vector q. The expanded query i8 ¢..panaca = C'¢ = TkaTq, If ¢ contains a term %;, this
term is now expanded to all similar terms through 777 ¢. If term ¢; has a small norm, its expanded weight
in the query will be almost negligible. In Normalized LSI, we in effect normalize each term in LSI space to

1 so that terms with small norm are promoted to be equals.

?Throughout this paper we use the Ly norm. Given a vector v, ||v||z = Z:;O v?. Normalizing v to 1 is achieved by

multiplication by the constant m



The complete Normalized LSI is described below:

e Compute the SVD with k factors Uy, Sk, Vi

e Normalize the rows of the projected terms T'= D~ 'U} S;.

e Compute the relevance score using Eq.(5) (in practice to

rows of XTT and columns of 77 Q.)
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(left panel) and log.entropy (right panel) term weighting schemes.
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and log.entropy (right) term weighting schemes.

The results of using NLSI on the TREC6 are shown in Figure 6 both tf.idf and log.entropy weighting

schemes. NLSI results on NPL are shown in Figure 7. Re-scaling the projected terms has a positive effect on
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LSI performance for the NPL and TRECS6 collections. For NPL, NLSI outperform both term matching and
LSI. For TREC6 NLSI improves upon standard LSI, but still fall short of term matching. We also applied
NLSI on MED, where NLSI performance is not as good as LSI.

6 Conclusions

LST projects the documents of a collection into a lower dimensional space in order to improve retrieval
performance. This work examines the properties of SVD-based projections in order to determine whether
they agree with our intuition about IR, concepts. The lower dimensionality of the space is intuitively desirable;
terms that are related “should” be brought closer together (the cluster hypothesis). However, we also see
that in LSI representation of words, rare terms (with low norm) are not adequately weighted, sometimes
resulting in poor retrieval performance. We proposed a LSI normalization scheme based on query expansion
interpretation of LSI. The normalized LSI partially compensated this inadequacy and resulting in better
retrieval precision on NPL and TREC.
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